Hibernation energetics of free-ranging little brown bats.
نویسندگان
چکیده
Hibernation physiology and energy expenditure have been relatively well studied in large captive hibernators, especially rodents, but data from smaller, free-ranging hibernators are sparse. We examined variation in the hibernation patterns of free-ranging little brown bats (Myotis lucifugus) using temperature-sensitive radio-transmitters. First, we aimed to test the hypothesis that age, sex and body condition affect expression of torpor and energy expenditure during hibernation. Second, we examined skin temperature to assess whether qualitative differences in the thermal properties of the hibernacula of bats, compared with the burrows of hibernating rodents, might lead to different patterns of torpor and arousal for bats. We also evaluated the impact of carrying transmitters on body condition to help determine the potential impact of telemetry studies. We observed large variation in the duration of torpor bouts within and between individuals but detected no effect of age, sex or body condition on torpor expression or estimates of energy expenditure. We observed the use of shallow torpor in the midst of periodic arousals, which may represent a unique adaptation of bats for conservation of energy during the most costly phase of hibernation. There was no difference in the body condition of hibernating bats outfitted with transmitters compared with that of control bats captured from the same hibernaculum at the same time. This study provides new information on the energetics of hibernation in an under-represented taxon and baseline data important for understanding how white-nose syndrome, a new disease devastating populations of hibernating bats in North America, may alter the expression of hibernation in affected bats.
منابع مشابه
Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody-mediated immune response ...
متن کاملHost, Pathogen, and Environmental Characteristics Predict White-Nose Syndrome Mortality in Captive Little Brown Myotis (Myotis lucifugus)
An estimated 5.7 million or more bats died in North America between 2006 and 2012 due to infection with the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) during hibernation. The behavioral and physiological changes associated with hibernation leave bats vulnerable to WNS, but the persistence of bats within the contaminated regions of North America suggests that ...
متن کاملThe Resistance of a North American Bat Species (Eptesicus fuscus) to White-Nose Syndrome (WNS)
White-nose Syndrome (WNS) is the primary cause of over-winter mortality for little brown (Myotis lucifugus), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats, and is due to cutaneous infection with the fungus Pseudogymnoascus (Geomyces) destructans (Pd). Cutaneous infection with P. destructans disrupts torpor patterns, which is thought to lead to a premature depleti...
متن کاملFrequent Arousal from Hibernation Linked to Severity of Infection and Mortality in Bats with White-Nose Syndrome
White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 fre...
متن کاملChanges in baseline and stress-induced glucocorticoid levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae).
Baseline and stress-responsive glucocorticoid (GC) levels were characterized during the active period in free-ranging male and reproductive female little brown myotis (Myotis lucifugus). Bats were trapped and blood was sampled within 3 min of capture at two maternity sites during the summer and at one swarming site prior to hibernation in New England. Both GC hormones, cortisol and corticostero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 12 شماره
صفحات -
تاریخ انتشار 2012